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1. Introduction

A major theme in the development of the chemical sciences
resides in improving the capability to negotiate issues of
selectivity in the organization of matter across length
scales.1 In this progression from condensed matter to nano-
structured material, molecular self-assembly has emerged as
a powerful technology for synthesis in the nanoscopic size
regime.2 In particular, H-bond directed organization of
molecular precursors has garnered much success.2a,3 Efforts
toward nanostructured materials are, in part, fueled by the
observation that the physical properties of both inorganic
and organic materials may depend signi®cantly upon the
size and relative orientation of the constituents.4 For
example, quantum con®nement effects displayed by nano-
particles allow band-gap to be tuned as a function of
particle size.5 Precise inter-arene register is required for
optimum performance of organic conductors formed from
TTF/TCNQ charge transfer stacks.6 In nature, nanoscopic

objects are typically assembled from macromolecular
precursors. Biomacromolecules, such as proteins and
DNA, not only exhibit high levels of structural homo-
geneity, they possess exceptional mechanical properties
(e.g. arachnid silk ®bers7,8), impressive catalytic functions
(e.g. cytochrome-p4509), and information storage cap-
abilities (e.g. DNA10). By developing technologies for the
induction of prede®ned secondary structural motifs via self-
assembly of oligomeric and polymeric precursors, the ®rst
steps are taken toward the de®nition of a platform for the de
novo design of abiotic polymer-based devices of nanometric
dimensions, which, upon suf®cient development, may
embody capabilities beyond those displayed by their natural
counterparts.

Herein, we review the utilization of H-bond interactions
toward the directed organization of abiotic oligomers. An
introductory discussion on issues of selectivity in H-bond
mediated synthesis also serves to provide general back-
ground on the use of H-bonds in self-assembly. This account
is not exhaustive, but is intended to highlight some of
the major advances in this area of research with special
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attention given to representative design strategies. The
growing body of literature pertaining to the organization
of molecular strands through the utilization of metal-ligand
coordination,11 p-stacking/solvophobic interactions,12,13

ionic interactions14 and nonbonded interactions15 will not
be covered.

2. Selectivity in noncovalent synthesis using H-bonds

To extend synthetic technology to the nanoscopic size
regime via self-assembly, chemists are challenged to de®ne
and address issues of selectivity in noncovalent synthesis.
Covalent bond formations are characterized in terms of
chemo-, regio-, stereo- and enantioselectivity.16 A uni®ed
perspective on synthetic technology would classify the
formation of H-bonds and covalent bonds in a mutually
consistent manner. The importance of de®ning guiding
principles for the de novo design and retrosynthesis of
noncovalent ensembles stems from the increasingly signi®-
cant role of such architectures in the design of supra-
molecular materials.1c,4,17

Perhaps the most signi®cant difference between covalent
and noncovalent interactions lies in bond strength. The
impact of low binding energies upon selectivity in
H-bonded systems is signi®cant. Generally, under ambient
conditions H-bonded ensembles are kinetically labile.
Reversibility precludes selectivities associated with kinetic
control, unless the noncovalent interaction is coupled to an
irreversible event (e.g. a kinetic template effect18). Under
thermodynamic control, the energy hypersurface represent-
ing all possible assembly manifolds may be sampled over
the course of time and speci®c modes of assembly favored
on the basis of their relative thermodynamic stabilities. A
corollary to the absence of kinetic control is spontaneous
error correction and self-healing processes. These
phenomena arise from the capacity of kinetically labile
systems to reestablish equilibrium once perturbed. The
challenge of directing the selectivity of noncovalent
synthetic operations thus resides in the engineering of an
energetic bias of suf®cient magnitude that discrimination
between alternate modes of assembly may be achieved
(ca. 4 kcal/mol for .99.9% homogeneity). That the energy

differences required for selection between competitive
assembly manifolds is generally on the same order of
magnitude as the very strength of the binding interactions
in play makes this a nontrivial task. Issues of selectivity as
applied to noncovalent systems are illustrated below.

2.1. Chemoselectivity

The ability to act upon a given functional group in the
presence of like or unlike functionality de®nes chemo-
selectivity. For H-bond mediated synthesis, chemo-
selectivity refers to the speci®city of functional group
aggregation. For example, both carboxylic acids and amides
embody self-complementary recognition groups de®ned by
H-bond donor±acceptor pairs. In molecules that incorporate
these two functional groups, homomeric (mode A) and
heteromeric (mode B) modes of assembly are possible
(Fig. 1). Selection of homomeric vs heteromeric assembly
modes is nontrivial as the strength of the H-bond inter-
actions19 are themselves on the same order of magnitude
as the energy differences required for discrimination
between alternate modes of assembly. Furthermore, analysis
in the solid state is complicated by crystal packing forces,
which are comparable in energy to H-bonds.20 Conse-
quently, modes of aggregation in the solid state may not
correspond to those observed in solution. For acid±amide
complexation, some studies suggest the heteromeric mode
of assembly is energetically more favorable.21 However, the
balance is delicate. For example, the nearly identical mono-
acid monoamides 1 and 2 exhibit heteromeric and homo-
meric modes of assembly, respectively.22 While 3
aggregates heteromerically,23 the diketopiperazine 4 adopts
a homomeric mode of assembly.24 The structural assign-
ments of complexes 1±4 have been established via X-ray
diffraction of single crystals (Fig. 1).

Given that H-bonds may be viewed as arrested inter-
mediates in deprotonation events, there is a signi®cant
acid-base component to their behavior.3i,25 It is believed
that optimum H-bond strength is achieved when the pKa

of the H-bond donor and the conjugate acid of the acceptor
are matched.26 With this being the case, one strategy for
directing the chemoselectivity of aggregation involves
modulation of the acid-base characteristics of the H-bond

Figure 1. Chemoselectivity issues involving acid-amide association: homo- vs heteromeric aggregation.
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donor±acceptor pairs. The pKa of the conjugate acid of
2-aminopyrimidine is ca. 3.5, which nearly matches that
of a carboxylic acid, pKa�4.5. As evidenced by the forma-
tion of the crystalline complex 5 and related cocrystals,
association of 2-aminopyrimidines and carboxylic acids is
highly chemoselective for heteromeric assembly.27

Similarly, 2-aminopyridines exhibit a strong preference
for heteromeric association with carboxylic acids, as
revealed in the solid-state structure of 6 and related
cocrystals (Fig. 2).28 The successful design of molecular
receptors29 and self-assembled capsules30 has been

predicated on the chemoselectivity of carboxylic acid±
aminopyrimidine and carboxylic acid±aminopyridine
association.

Complete proton transfer doubly impacts chemoselectivity
by introducing charge±pairing interactions31,32 and
inverting the arrangement of one H-bond donor±acceptor
pair. Upon proton transfer, complementarity amongst
H-bond donors and acceptors can only be achieved upon
heteromeric aggregation. Binding is robust for systems
integrating such ionic H-bonds. Dissociation of the

Figure 2. Chemoselective formation of heteromeric aggregates directed by pKa matching.

Scheme 1. The impact of proton transfer upon chemoselectivity.

Figure 3. Association constants for homo- and heteromeric complexes arising from ditopic H-bond interactions.



E. A. Archer et al. / Tetrahedron 57 (2001) 1139±11591142

guanidinium±carboxylate receptor±substrate complex 7
cannot be observed by 1H NMR upon dilution in neat
DMSO.33 Binding through the cooperative action of three
amidinium residues, as in citrate receptor 8, is suf®ciently
high to permit complexation in aqueous media.34 The struc-
tural assignment of aggregates 7 and 8 has been established
by X-ray diffraction of single crystals (Scheme 1).

Association constants of some representative ditopic
H-bonded complexes are indicated below (Fig. 3).35 The
considerable range of values (ca. 101±105 M21) is note-
worthy and may be attributed primarily to pKa matching
effects and secondary electrostatic interactions (vide supra).

2.2. Regioselectivity

The ability to control the relative orientation of two or more
reacting partners de®nes regioselectivity. For noncovalent
binding events, the regioselective association of molecular
components can result in the formation of alternative super-
structures. For example, unsymmetrical molecules mani-
festing DAD±ADA H-bond donor±acceptor arrays may,
in principle, yield two regioisomeric ensembles (Scheme 2).

Regioselectivity can be induced under thermodynamic
control via steric direction or preorganization of the

molecular components using covalent scaffolds. This
amounts to the incorporation of structural features that
become sterically repulsive upon formation of objects
derived from undesired regioisomeric assembly manifolds.
For the association of an N-substituted melamine (or
triaminopyrimidine) with barbituric acid (or cyanuric
acid), two limiting arrangements are possible: the linear
motif 1036 or the cyclic motif 9.37 An intermediate `crinkled'
tape motif has also been observed.37a,38 To assist in directing
the regiochemical outcome of assembly, the steric demand
of substituent R1 may be modulated. If R1 is large, non-
bonded interactions evident in the linear ensemble are
relieved upon formation of the cyclic array (Scheme 3).

The assembly of related singly,39 doubly,40 triply,41 quad-
ruply42 and polymerically43 stacked H-bonded macrocycles
based on ADA±DAD H-bond recognition motifs has been
achieved similarly through steric direction and preorganiza-
tion of the molecular components upon covalent scaffolds.
In the case of molecular components 11 and 12,43b the
chemoselectivity (interactions discriminating between
closed dimer vs polymeric aggregate) and regioselectivity
(interactions discriminating between macrocyclic vs linear
motifs) of aggregation for 11 and 12 is directed by the
non-commensurate nature of the scaffolds separating
H-bonding recognition groups (7.5 vs. 5.0 AÊ , respectively).

Scheme 2. Regioisomeric association of unsymmetrical DAD±ADA H-bond arrays.

Scheme 3. Regioselective association directs the formation of discrete vs 1-dimensional motifs.

Scheme 4. The formation of noncovalent rods exploits the use of covalent scaffolds to direct the chemo- and regioselectivity of aggregation.
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The self-assembled rods were observed via transmission
electron microscopy (Scheme 4).

For the systems described above, the array of H-bond
donor±acceptor sites displayed by the molecular com-
ponents is such that, barring steric or geometric constraints,
alternative modes of assembly may be adopted in which all
H-bond donors and acceptors may be satis®ed. In this way,
the information embodied by the molecular components is
ambiguous and, hence, regiochemistry is unde®ned. Such
regiochemical issues may be rendered moot through
judicious arrangement of H-bond donor±acceptor sites as
in 13a,44 13b45 and 14.46 These self-complementary
molecular precursors each display DDA±AAD H-bond
arrays. A 608 angle between the H-bonding faces of these
heterocycles directs the formation of the cyclic hexamer 15,
the only arrangement for which all H-bond donors and
acceptors may be satis®ed in an intra-ensemble sense
(Scheme 5).

2.3. Stereoselectivity

Control of the relative orientation of two or more stereo-
centers in a given molecule de®nes stereoselectivity. Dia-
stereoselectivity more speci®cally refers to stereoselective
bond formations in which two stereogenic centers result. In
a diastereoselective transformation, there exist two limiting
cases: (a) the stereogenic centers may form in concert, or (b)
a preexisting stereogenic center may induce the relative
stereochemistry of an incipient stereocenter. For non-
covalent systems, the association of two chiral molecular
precursors may result in the formation of a diastereomeric
aggregate. Additionally, since noncovalent bond formations

may be stereogenic (see Scheme 6), chiral±achiral or
achiral±achiral molecular associations may also exhibit
diastereoselectivity.

Owing to extensive studies in the area molecular recognition
and host±guest chemistry,47,59 particularly in the area of
amino acid/peptide receptors,48 numerous chiral molecular
receptors that act through the formation of H-bonds to bind
racemic guests have been described. Although referred to as
`enantioselective binding', strictly speaking, such
substrate±receptor interactions result in the formation of
diastereomeric complexes and thus involve the control of
relative stereochemistry. Therefore, these binding events are
best described as stereoselective. To effectively discrimi-
nate among diastereomeric modes of binding, synergy
among the collective noncovalent forces is required in the
form of multiple points of contact. l-Tryptophan receptor±
substrate complex 1649 binds through three points of attach-
ment: a ditopic guanidinium±carboxylate interaction, a
tritopic ammonium ion±crown ether interaction and
aromatic p-stacking/solvophobic interactions. Upon expo-
sure to aqueous solutions of racemic tryptophan or phenyl-
alanine, phase transfer of the aromatic amino acids into
dichloromethane occurs with quantitative stereoselectivity.
For receptor±substrate complex 17, the af®nity of the
(S,S)-receptor for the indicated (S)-lactic acid carbamate is
approximately an order of magnitude higher than for the
corresponding (R,R)-receptor±substrate complex.50

Similarly, the af®nity of binaphthalene based receptor
18 for N-Cbz-(l)-Asp is roughly one order of magnitude
higher than for N-Cbz-(d)-Asp, with an energy difference
of 6.9 kJ/mol between the diastereomeric complexes
(Fig. 4).51

Scheme 5. `Fully instructed' molecular components unambiguously de®ne the regiochemistry of aggregation.

Figure 4. Stereoselective binding of racemic guests.
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2.4. Enantioselectivity

Enantioselectivity relates to the control of absolute stereo-
chemistry. Sustained induction of enantiomeric excess in a
stereogenic transformation requires the chiral product to be
kinetically inert. Reversibility in the formation of a chiral
product would preclude any enduring optical enrichment as
mirror image isomers are equi-energetic (this is not exactly
true due to parity violations involving the weak force52) and
form in equimolar amounts under equilibrium conditions.
Stereogenic associations occurring through the action of
H-bonds, as in the formation of 19, are known. However,
the kinetic lability of the derived ensembles makes their
synthesis in non-racemic form nontrivial (Scheme 6).53

A successful yet capricious method for symmetry breaking
in the stereogenic formation of noncovalent ensembles
involves spontaneous resolution upon crystallization. This
topic has been extensively reviewed.52,54 Resolution of
chiral superstructures arising from H-bond associations is
viable provided the following conditions are met: (1) the
formation of crystal nuclei are infrequent and slow, (2)
crystal growth is rapid once initiated, and (3) the inter-
conversion of enantiomeric forms in solution is fast.
Spontaneous resolution in the stereogenic formation of H-
bonded aggregates has been observed for both achiral and
`chiral non-resolvable' precursors in the solid state. In the
former case, urea self-assembles with the aid of an n-alkane
template to form helical channels.55 In the latter case, chiral
gauche conformations of hydrogen peroxide or ethylene-
diamine sulfate are resolved upon crystallization.54d

2.5. Preorganization, cooperativity and allostery

In addition to their reversible formation, low energy binding

interactions are typically associated with shallow potential
energy wells. As such, single H-bonds are manifested by
`soft' directionality, being amenable to considerable distor-
tion accompanied by minimal loss of binding energy.56 The
overall strength and directionality of the binding interaction
can be enhanced through the use of H-bond donor±acceptor
arrays. Such composite binding sites may be thought of as
`recognition groups' as they encode for selective association
with a complementary array. Representative tritopic H-bond
recognition groups are schematically depicted below along
with a corresponding range of Kassn values (Fig. 5).3d For the
three tritopic motifs, the strength of binding increases with
decreasing number of repulsive secondary electrostatic
interactions.57 A linear correlation for the prediction of
H-bond associations in chloroform a priori has been
proposed in which each H-bond contributes
1.9^0.69 kcal/mol for each attractive or repulsive second-
ary interaction.19 While useful for qualitative predictions,
this method does not account for the considerable range of
values observed for the tritopic (Fig. 5) or ditopic motifs
(Fig. 3). The great disparity in Ka values are a consequence
of factors beyond the nature and number of primary
and secondary H-bond interactions. Preorganization,
cooperativity, binding site solvation and pKa matching
effects all strongly in¯uence binding (Fig. 5).

Barring signi®cant entropy/enthalpy compensation,58

preorganization of binding residues in an arrangement
suitable for complexation reduces the entropic cost of asso-
ciation, thereby enhancing the stability of the noncovalent
ensemble. Enhanced association via preorganization of
binding residues has been evidenced in the complexation
of metal ions59 and p-molecular guests.60 In the latter
case, it was estimated that the removal of a free bond
rotation contributed ca. 1 kcal/mol to the free energy of

Figure 5. Triptopic H-bond recognition groups and related Kassn value ranges.

Scheme 6. A stereogenic noncovalent bond formation.
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binding. Preorganization also plays a key role in H-bonded
systems. For example, the binding of diethyl barbiturate to
the macrocyclic iso-phthalamide-based receptor 20 is nearly
two orders of magnitude greater than for the related confor-
mationally unrestricted receptor 21 (Fig. 6).61

That an initial complexation event may in¯uence the
energetics of subsequent complexation events is the basis
of cooperative and allosteric effects. Cooperativity is a
common characteristic in biological systems62 and results
from the coupling of tandem associations such that the
energies of successive interactions are related in non-linear
increments. In synthetic H-bonded systems, both positive
and negative cooperativity have been noted in the self-
assembly of doubly and quadruply stacked H-bonded
macrocycles, respectively. In the case of molecular pre-
cursor 22,40c equilibration in the presence of three equiva-
lents of cyanurate 23 yields a mixture containing only
doubly stacked H-bonded macrocycles (analogous to 9)
and uncomplexed 22. The preferential complexation of six
molecules of 23 in the form of the doubly stacked H-bonded
macrocycle, rather than a distribution of partially
complexed intermediates, suggests a strong positive
cooperative effect. In contrast, when molecular precursor
2440d is treated with barbiturate 25, a mixture of assemblies
is obtained. The authors suggest that steric interactions
between stacked H-bonded macrocycles provoke a negative
cooperative effect (Scheme 7).

Whereas cooperativity broadly applies to tandem self-

organization events, allostery more speci®cally refers to
systems incorporating multiple receptor±substrate binding
sites and the transfer of information between binding
subunits. Allosteric effects are prevalent in naturally
occurring systems and play a key role in the regulation of
enzymatic processes.63 Recently, synthetic systems display-
ing allostery have been reported.64,65 In the speci®c case of
H-bonded systems, metal ion complexation of a remote
binding site has been exploited for the induction of positive
and negative allosteric effects. The binding of uracil by
receptor 26 is effectively turned off upon addition of Cu(I)
salts.66 The addition of sodium to oligo-ethylene glycol-
strapped receptor 27 enhances binding of tetrahydro-
pyrimidinone by roughly one order of magnitude
(Scheme 8).67

3. H-Bond directed organization of molecular strands

Recent `cross-pollination' between the ®elds of macro-
molecular and supramolecular chemistry has prompted
investigations into the self-assembly of dendritic macro-
molecules,68,69 block copolymers,75a,70,71 polymers incorpor-
ating side chain H-bonding residues72 and noncovalent
main chains73 and the polymerization of organized
assemblies.74,75 In general, these studies have focused on
more global aspects of polymer structure, in particular
microphase separated domains and liquid crystallinity.
More recently, to direct the generation of more localized
order, the H-bond mediated organization of `instructed'

Figure 6. Preorganization of residues comprising a binding site can enhance association.

Scheme 7. Cooperativity in the assembly of stacked H-bonded macrocycles.
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molecular strands, also termed foldamers,76a has been the
focus of intensive investigation.12,76 In order to design a
polyvalent molecular strand that assembles to yield a
single conformer with high ®delity, complex issues of
selectivity must be taken into account. In this section, we
review examples of instructed molecular strands that
adopt well-de®ned conformations through the action of
H-bonds and outline key selectivity issues addressed in
their design.

Strategies for the H-bond directed organization of abiotic
molecular strands may be categorized as follows: (a) strands
which undergo self-induced organization and (b) those

which assemble in response to intermolecular complexation
events.

3.1. Self-induced organization of molecular strands

3.1.1. Aliphatic oligoamides. In peptidic biomacro-
molecules, amide H-bonds are used to contribute to the
stabilization of diverse secondary structural features. There-
fore, it is natural that the H-bonding capabilities of amides
have found extensive use in the directed organization of
abiotic molecular strands. Secondary structures derived
from abiotic oligoamides often have enhanced stability
with respect to their naturally occurring counterparts. For

Scheme 8. Examples of negative and positive allostery in H-bonded systems.

Figure 7. Self-organizing abiotic oligoamides that express well-de®ned secondary structural motifs.
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example, whereas natural peptides only adopt distinct
secondary structures upon reaching a length of 15±20
amino acid residues, b-amino acid derived peptides 2877

and 29,78 g-amino acid derived peptides 31,79 peptoids
3280 and furanose carbopeptoids 3381 all form stable helical
motifs in solution and in the solid state with as few as 3±6
residues. b-Peptides that express turn, hairpin and sheet
motifs have also been described.82 Polypyrrolinones 30
adopt conformations analogous to peptide b-strands,
b-turns and helices83 (Fig. 7). v-Amino acid containing
peptides84 and other abiotic oligoamides85 and polyamides86

possessing non-aromatic backbones also adopt well-de®ned
superstructures. Abiotic oligoamides of undetermined
superstructure have also been prepared.87,88

For these self-organizing strands, the kinetic and entropic
advantages of intramolecular association direct the chemo-
selectivity of aggregation, i.e. intra-strand H-bonding is
favored over intermolecular aggregation. In synergy with
the information embodied by the H-bond donor/acceptor
sites, the periodic placement of homochiral stereogenic

centers over the length of the strands further assists in direct-
ing the formation of helical folded structures and de®nes the
enantioselectivity of helix formation.

3.1.2. Aromatic oligoamides. Aromatic oligoamides are
less conformationally mobile than their aliphatic counter-
parts and their assembly is more easily directed. Indeed,
strategic juxtaposition of H-bond donor/acceptor sites
upon the arene backbone allows complete control of
amide rotamer equilibria and, as a result, all backbone
dihedral angles of the oligomer may be de®ned. Ordered
superstructures have thus been designed de novo. Oligo-
ortho-aminobenzoic acid amide 3489 and related oligo-
anthranilamides90 assume extended helical secondary
structures. Internal H-bonding, in the form of motifs A
and B (Fig. 8), induces curvature into the oligomer back-
bone. Similarly, pyridine 2,6-dicarboxamide derivatives
3591 assemble through the action of H-bonds according to
motif C. Oligomer 35a was found to dimerize in solution,
undergoing dynamic exchange between single and double
helical states. In the solid state, molecular strand 35b resides

Figure 8. Self-organizing aromatic oligoamides that adopt helical secondary structures.

Figure 9. Self-organization of alkoxy-substituted oligoamides.
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in the indicated double helical form (35b)2, as observed by
X-ray crystallographic analysis.

The strong conformational predisposition of aromatic
oligoamides has been used to direct the secondary structure
of appended `conformationally promiscuous' strands.
Speci®cally, conjugation of alkoxy-substituted aromatic
oligoamides with small peptides comprised of natural
amino acids yields hybrids of well-de®ned conformation.
Oligomer 36 adopts a b-sheet type structure.92 Related
alkoxy-substituted aromatic oligoamides, such as 37, have
been found to take on a crescent shape in solution. Intra-
molecular H-bonding similar to motif A directs the folding
process (Fig. 9).93

The persistence and ®delity of aromatic oligoamide super-
structures has resulted in the modular utilization of aromatic
oligoamides toward the design of branched systems. Rigid
oligoamide side chains appended to a high symmetry core,
as in compound 38, permits the design of discotic liquid
crystalline materials. The disk-like morphology of 38
promotes a solvophobically driven second-order self-
assembly process: the formation of stacks resulting in a
columnar mesophase.94 The topography of increasingly

complex dendritic systems has been controlled through the
modular implementation of prede®ned oligoamide super-
structures. Third-generation dendrimer 39 is expected to
adopt a propeller-type conformation, as exhibited in the
solid-state for the corresponding second-generation species
(Fig. 10).95

To utilize self-organizing oligomers in biological applica-
tions, it would be desirable to de®ne strand motifs
that persist in aqueous media. Oligoamide 4096 has been
found to adopt a stable turn conformation in DMSO, a

Figure 10. Conformationally de®ned branched aromatic oligoamides.

Figure 11. A self-organizing oligoamide that assembles in competitive
media.
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highly competitive medium, owing to robust carboxylate±
guanidinium H-bond interactions (Fig. 11).

3.2. Template-induced organization of molecular
strands

3.2.1. Molecular templates. While the self-induced
organization of molecular strands bene®ts from the facility
of intramolecular association, in the case of strands that
assemble in response to an external template, competitive
internal H-bonding must be overcome. This chemo-
selectivity issue is mitigated through the modular utilization
of molecular receptors with established intermolecular bind-
ing properties as monomers for the synthesis of related
oligomeric molecular receptors. For example, the dimeric
receptor 42 may be viewed as a homologue of iso-phthalic
acid receptor 41.97 For 42, the binding of iso-phthalic acid
reduces conformational space in the form of the linear 2:1
complex indicated below, as evidenced by X-ray crystal-
lographic analysis. The chemoselectivity of aggregation is
driven by pKa matching effects and the rigidity of 42, which
precludes intramolecular associations (Fig. 12).

Oligo-iso-phthalamide 4398 may be viewed as a homologue
of receptor 21 (Fig. 6). Whereas 21 binds a single substrate,
oligomer 43 accommodates two substrate molecules, in this
case decyl cyanurate. Upon binding, helical disk-like
objects possessing radially disposed alkyl chains result.
Solvophobic interactions direct a second-order assembly
event: the stacking of the helical disks to yield ®bers, as
evidenced by electron microscopy (Scheme 9). The

melamine containing molecular strands 22 and 24 also
self-assemble upon exposure to cyanurate or barbiturate
templates, respectively (Scheme 7).

Expanded porphyrins may be engineered to possess ef®cient
anion binding properties.99 Non-macrocyclic analogues, i.e.
linear oligopyrroles, are also well-suited to this task. The
dihydrochloride salt of hexapyrrole 44 adopts an `S-shaped'
conformation induced by the binding of two chloride
anions.100 The indicated S-shaped conformation was
detected in solution and in the solid state (Fig. 13).

3.2.2. Oligomeric templates. In addition to templating by
small molecules, synthetic oligomers may also assemble by
virtue of homo- or heteromeric association with other
molecular strands to yield oligomeric duplex or triplex
ensembles. Studies on the chemical etiology of nucleic

Figure 12. Oligomeric iso-phthalic acid receptor 42 adopts a linear arrangement upon binding.

Scheme 9. Template-induced helix formation of an oligomeric molecular receptor.

Figure 13. Oligo-pyrrole dihydrochloride 44 adopts an `S-shaped' confor-
mation upon binding chloride ion.
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acid structure have brought forth a spectacular panorama of
self-associating molecular strands structurally related to
DNA, represented here by `homo-DNA' 45.101 The modular
nature of DNA recognition via base pairing has inspired the
design of abiotic molecular strands decorated with DNA
base pairs including `polyamide nucleic acids'102 (PNA)
such as 46.103 Base pair functionalized oligomers further
removed from those found in Nature may also be
envisioned. Compound 47,104 which incorporates a fused
aromatic backbone, self-assembles to form a duplex dimer
(Fig. 14).

So-called `molecular zippers', represented by complex 48,
were the ®rst family of molecular strands devoid of DNA
base pairing motifs reported to form duplex materials.105 For
homologous zipper strands, increasingly high association
constants were obtained along with marked cooperativity
effects. The association constant for complex 48 in 95:5
CDCl3:CD3OD (v:v) is 5.5£104 M21. The remarkably
robust association in a methanolic medium may, in part,
be attributed to the absence of destabilizing secondary elec-
trostatic interactions. Similarly, heteromeric complex 49106

is devoid of secondary interactions. Preorganization of the
composite strands in the linear arrangement for duplex

formation is achieved through the action of intramolecular
H-bonds. The authors report an association constant of
1.3£109 M21 in chloroform as determined by isothermal
titration calorimetry (Fig. 15).

For complexes 48 and 49, it is important to note that the
composite strands bind in register. In principle, H-bonding
could occur in a frame-shifted sense, resulting in the forma-
tion of polymeric aggregates. Although the H-bond donor
acceptor sites of the composite strands are not in direct
juxtaposition, they nevertheless act in concert as a
composite H-bonding recognition group. This behavior is
entropically driven, i.e. the formation of numerous discrete
duplexes is favored relative to the formation of fewer
polymeric complexes. The high preference for in register
binding augurs well for the controlled assembly of higher
oligomers.

Single strands that reside in well-de®ned conformations
may adopt alternative forms upon complexation with a
complementary strand. It was found that in dilute chloro-
form solution, compounds 50 and 51 exist as the folded
conformers 50b and 51b, respectively.107 However, when
combined, 50 and 51 mutually unfold and dimerize yielding

Figure 14. Duplex forming molecular strands incorporating DNA base pairs.

Figure 15. Formation of heteromeric duplexes through the association of complementary oligoamides.
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the heteromeric duplex 52. An association constant of
5£105 M21 was observed. These systems are likely to ®nd
use as modules for the development of higher oligomers
with adaptive properties (Scheme 10).

The signi®cance of instructed molecular strands toward the

design of functional materials is underscored by the synthe-
sis of oligomers, represented by 53, capable of recognizing
duplex DNA in a site-speci®c manner via triple helix forma-
tion.108 Beyond the potential to mediate biological events in
vivo (e.g. gene expression), the ability to devise oligomers
capable of `reading' information manifest in a polymer

Scheme 10. Adaptive oligomers undergo conformational reorganization upon complexation.

Figure 16. A molecular strand that site-speci®cally assembles upon a DNA template.

Scheme 11. Covalent casting of a 1-dimensional H-bonding motif to yield an abiotic duplex oligomer.
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sequence raises numerous possibilities regarding informa-
tion storage (Fig. 16).

A general strategy for the development of molecular strands
of predetermined superstructure involves the `covalent
casting' of 1-dimensional H-bonding motifs.109 Through
covalent casting, covalent frameworks are designed to
embrace noncovalent ensembles, effecting preorganization
of the composite binding sites and, in turn, augmenting the
overall strength of the supramolecular framework. This
differs from covalent capture,110 which amounts to a
template-directed synthesis. For a 1-dimensional super-
structure, such as the H-bonded tape 54, covalent casting
is accomplished by substituting pairs of chloro-substituents
on adjacent triazines with aminoalcohol-based linking
groups.107 The preparation of duplex polymers, and iterative
approaches to monodisperse duplex oligomers, such as the
tetramers comprising duplex 55, have been developed
(Scheme 11).111

It is signi®cant that a `cast' strand is equivalent to an oligo-
meric molecular receptor. In principle, such an oligomer
could serve as a template for the covalent capture of
complementary monomers in a process resembling an
abiotic version of the polymerase chain reaction, as
schematically depicted below for the case of a block
copolymer system. In this way, self-replicating polymers
may be devised, which retain information manifest in their
sequence akin to DNA (Scheme 12).

4. Perspectives

Through the development of technologies for the induction
of prede®ned secondary structural motifs via inter- and
intramolecular assembly events, a platform for the de
novo design of functional polymers and devices of nano-
metric dimensions is de®ned. To meet these goals, covalent
objects are valued not only for their structural features, but
are appreciated for their ability to embody, retrieve, transfer
and process information. As such, synthetic chemistry takes
on the characteristics of an information science, with
covalent and noncovalent synthetic technologies as its foun-
dation. The signi®cance of self-assembly with respect to the
preparation of functional materials resides in the potential to
access nano-architectures in a spontaneous yet controlled

fashion, bypassing the need to resort to demanding fabrica-
tion protocols. Owing to the dynamic nature of self-
assembly, it is anticipated that materials obtained through
self-assembly processes would exhibit unique adaptive and
responsive characteristics. It is hoped that the examples
presented in this account should assist in galvanizing the
concepts underlying this burgeoning ®eld of research and
stimulate still deeper analyses.
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